OPTICAL COHERENCE TOMOGRAPHY: POSTERIOR SEGMENT APPLICATIONS

Texas Optometric Association
Austin, Texas • February, 2014

Nancy N. Wong, OD, PhD, FAAO
VA Western New York Health Care System
Montrose, NY

Disclosure Statement: No Financial Disclosures & No Conflicts of Interest

Transmission

Optical Scattering

Absorption

Optical Scattering

- Property of heterogeneous media
- Microscopic spatial variations of the refractive index within tissues from subcellular structures (e.g., nuclei, cytoplasm, cell membranes, smaller structures, nerve fibers, or axons)
- Optical scattering causes incident light to be redirected in multiple directions
 - Back-scattered light – incident light completely reverses direction when scattered
 - Back-reflection – incident light falls at boundary between 2 homogenous materials that have different indices of refraction

- Removed from incident beam: Absorption arises due to tissue chromophores (absorption spectrum approximates that of incident light)

- Hemorrhages
- Hypertrophy of the RPE
- Choroidal Nevus

- Tissue Chromophores (Hemoglobin & Melanin)

Normal Tissue

Abnormal Tissue

- Nerve fiber layer – NFL
- Outer plexiform layer or Henle’s fiber layer – OPL
- Boundary between photoreceptor inner segment (IS) & outer segment (OS)
- Highly reflective due to the highly organized outer segment
- Rich in rhodopsin visual pigment
- Choroidal and chorio-capillaris

- Ganglion cell layer – GCL
- Inner nuclear layer – INL
- Outer nuclear layer – ONL
Vitreo-Retinal Interface

- High optical transmission
- Typically, not visualized on OCT

Posterior hyaloid
- Minimally distinguishable from retinal surface
- The posterior hyaloid is visible in PVD

Asteroid Hyalosis
- Minimal reflective opacities

Abnormal Vitreo-Retinal Interface

- **PVD**
 - Collagen fibrils of the posterior vitreal cortex are adherent to the macular ILM
 - Adhesion facilitated by proteoglycans
 - Laminin
 - Fibronectin
 - In PVD, vitreal liquefication and weakening of adhesions occur

- Abnormal attachments between the vitreous and retina may result in alterations in retinal anatomy
 - Single or multiple retinal adhesions
 - Alteration of the retinal profile

Vitreo-Retinal Adhesions

- Vitreo-macular adhesions (VMA)
 - Adhesion of posterior hyaloid cortex involving the macular region
- Vitreo-macular traction (VMT)
 - Incomplete separation of the posterior vitreous
 - Persistent macular attachment
 - Incomplete posterior vitreous detachment

Abnormal attachments between the vitreous and retina may result in alterations in retinal anatomy

Vitreo-Macular Tractional Syndrome (VMTS)

- **VMTS** – clinically subtle
- OCT – increased recognition and diagnosis
 - Persistent vitreo-retinal adhesions (single or multiple)
 - Hyper-reflective bands
 - Altered retinal contour
 - Increased retinal thickness with possible intra-retinal edema

Epi-retinal Membrane (ERM)

- Layer of abnormal tissue proliferation on retinal surface
- **Etiology**
 - Trauma
 - Post-surgical
 - Idiopathic – Typically following posterior vitreous detachment

- **VMTS** – clinically subtle
Epiretinal Membrane

- OCT demonstrates:
 - Hyper-reflective band adherent to the internal limited membrane (ILM)
 - No retinal separation
 - Progression may result in:
 - Loss of foveal depression
 - Macular edema

OCT Definition of ERM

- ERM globally adherent on the ILM
- Represents majority of epiretinal membranes
- Better ERM surgical peel prognosis
- ERM demonstrates focal adhesions
- Less common

Pseudo-hole

- OCT distinguishes between pseudo-holes and true holes
- Pseudo-holes
 - Deep & widened foveal pit contour
 - Foveal pit becomes steepened
 - Retinal tissue remains at the base of the pit

Macular Lesions

- Macular cyst
 - Clear, signal-free area within the retina/fovea
- Lamellar hole
 - Partial thickness loss or separation of retinal tissue with a thin layer of persistent outer retina above the RPE
- Full-thickness macular hole
 - Complete loss of retinal tissue in the fovea extending to the RPE layer

Macular Cyst

- Clear, signal-free area within the retina/fovea

Lamellar Hole

- Partial thickness holes
- Reduction in foveal thickness corresponding to loss of internal retinal layers
- External retinal layers remain intact → preserving vision
 - External nuclear layer
 - External limiting membrane
 - Junction between the internal & external photoreceptor segments
Lamellar Hole

- Abnormal foveal contour with a reverse anvil configuration
- Separation of inner retinal layer
- Partial thickness loss or separation of retinal tissue with a thin layer of persistent outer retina above the RPE

Full-Thickness Macular Holes

- OCT provides quantitative information
 - Base and minimum hole diameters
 - Retinal edge thickness
- Macular holes <400µm in diameter have higher rate of surgical success than larger holes

Gass Classification of Macular Holes

- **Stage 1**
 - Loss of foveal depression
 - Foveal cyst
 - Posterior hyaloidal tangential traction
- **Stage 2**
 - Intra-retinal cyst
 - Partially adherent operculum
- **Stage 3**
 - Full-thickness hole
 - Cystoid edema
 - Hole margins rounded
 - No PVD
- **Stage 4**
 - Full-thickness hole
 - Cystoid edema
 - Hole margin rounded
 - PVD

Treatment

- Enzymatic Vitreolysis with Ocriplasmin (28D S/P Injection – 125µg)
 - Ocriplasmin (n=464)
 - Placebo (n=188)
 - Sig
 - VMA Resolution
 - 26.5% vs. 10.1%
 - P<0.001
 - Total PVD
 - 13.4% vs. 3.7%
 - P<0.001
 - Non-surgical closure of macula hole
 - 40.6% vs. 10.6%
 - P<0.001

- Microplasmin for Intravitreal Injection – Traction Release without Surgical Treatment (MIVI-TRUST)

Ocriplasmin (Jetrea®)

- IV ocriplasmin (Jetrea®)
 - Truncated serine protease plasmin
 - Proteolytic activity against fibronectin and laminin
 - Non-surgical vitreolysis
 - Induces vitreous liquefaction
 - Separation of adhesions from retina

Drusen
- Irregularity and/or disruption of the contour of hyper-reflective band representing RPE / Bruch's membrane / chorio-capillaris complex
- Focal elevation of highly reflective RPE band
- Altered foveal contour

Neovascular AMD
- Irregular foveal contour
- Decreased reflectivity beneath neuro-sensory retina due to subretinal fluid accumulation from CNVM
- Thickened and/or irregular highly reflective external band

Geographic Atrophy
- Highly reflective signal from choroid in area corresponding to geographic atrophy
 - Enhanced penetration and reflection of signal from choroid due to attenuation of RPE / Bruch's membrane / chorio-capillaris complex
 - Overlying retina thinned with loss of layered structure of retina

Clinical Applications of OCT in AMD
- Characterizing CNVM, especially early CNVM
- Response to therapy
 - Qualitative
 - Quantitative
- Detecting an early recurrence of CNVM
- Assessment of fluid-free zone with anti-VEGF treatment

Pigment Epithelium Detachments (PED)
- Serous Detachment
- Drusenoid Detachment
- Vascular Detachment
- Fibrovascular Detachment
Fundus Autofluorescence

- FAF utilizes short-medium wavelength of light to detect lipofuscin accumulation
- Lipofuscin → Byproduct of phagocytized outer segment of photoreceptors
- Lipofuscin accumulates in RPE
- Lipofuscin represents a biomarker of
 - Normal aging
 - Chronic retinal disease
- Lipofuscin deposition in RPE may precede clinical / visual manifestations

FAF → Normal

- Fundus with normal RPE & normal level of lipofuscin → Mildly hyperfluorescent
- ONH without RPE → hypofluorescent
- Fovea & vessels exhibit signal absorption → hypofluorescent

FAF → Abnormal

<table>
<thead>
<tr>
<th>Hypofluorescent</th>
<th>Hyperfluorescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dark)</td>
<td>(Bright)</td>
</tr>
</tbody>
</table>

- RPE atrophy
- Retinal hemorrhages
- Exudation
- Pigmentation
- Hard drusen
- Increased Lipofuscin
 - Best
 - Stargardt
- Old hemorrhages
- Soft drusen

Plaquenil®

2002 AOA Guidelines

- Dilated fundus exam
- Automated VF 10-2
- Color vision
- Optional
 - mERG
 - FA

2011 AOA Revised Guidelines

- Dilated fundus exam
- Automated VF 10-2
- 1 of the following
 - SD-OCT
 - mERG
 - FAF

Fundus Autofluorescence

- Geographic atrophy → Atrophic AMD
 - Atrophic retina has absence of RPE and lipofuscin
 - Atrophic area demonstrates hypo-fluorescence (decreased intensity) with high contrast to surrounding non-atrophic retina

Plaquenil®

- FAF
 - Mottled areas of increased FAF corresponding to injured RPE cells
 - Progression to areas of decreased FAF and atrophy, with a typical bull’s-eye configuration
Fundus Autofluorescence

- Geographic atrophy in non-neovascular AMD
 - Hypofluorescent (Dark)
 - Hyperfluorescent junctional zone (Bright banded surround)
 - Compromised RPE (prior to cell death)
 - Impaired RPE not supportive of photoreceptor outer segment
 - Junctional zone indicative of geographic atrophy progression
- Fundus Autofluorescence in Age-Related Macular Degeneration (FAM) Study
 - Clinical fundus appearance may NOT correlate with FAF imaging
 - FAF may be indicative of disease progression not clinically visible

CVO Macular Edema

- Elevation / thickening of neuro-sensory retina due to fluid accumulation
- Edematous fluid accumulation results in:
 - Edema → optically transparent
 - Decreased reflectivity
- Superficial blood results in increased reflectivity

DM Macular Edema

- Clinical presentation
 - Vascular endothelial compromise
 - Breakdown of blood retinal barrier
 - Increased vaso-permeability
- OCT demonstrates
 - Focal edema
 - Diffuse edema
 - Thickened retina
 - Small irregular cavities

OS Pseudophakic CME

- CME (Irvine Gass Syndrome)
 - Retinal thickening
 - Intra-retinal cavities of reduced reflectivity
 - OCT may be equally effective as IV FA in establishing diagnosis OD CME but less invasive
 - Quantitative measurements of retinal thickness to evaluate therapeutic efficacy

Optic Nerve

Progression of ONH Drusen

- Hyaline bodies with calcific component located anterior to the lamellar cribrosa
- Pathogenesis
 - Abnormal axonal transport and metabolism
 - Accumulation of axoplasmic debris
 - Deformation of amorphous cellular material embedded in the optic nerve
 - Compress NFL
 - Visual Field Defect
 - Compress Vascular Supply
 - Disc Hemorrhage
 - Disrupt Juxta-Papillary Tissue
 - CNVM
Optic Disc Edema

- Bilateral + increased intra-cranial pressure → Papilledema
- Clinical findings
 - Optic disc swelling
 - Elevation primarily due to axonal swelling and degeneration
- OCT findings of papilledema
 - RNFL demonstrates thickening in sections on TSNIT scan
 - Smooth internal contour and a lazy V pattern on SD-OCT
 - Retinal hemorrhages and exudation may result in increased backscattering and shadowing of underlying structures

Optic Nerve Drusen vs. Edema

<table>
<thead>
<tr>
<th>Drusen</th>
<th>Edema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated optic nerve head</td>
<td>Elevated optic nerve head</td>
</tr>
<tr>
<td>Lumpy-bumpy appearance</td>
<td>Smooth internal contour and a lazy V pattern on TD-OCT</td>
</tr>
<tr>
<td>RNFL thinning nasally, thickening other sections</td>
<td>Diffuse RNFL thickening in all sections of nerve</td>
</tr>
</tbody>
</table>

Drusen

- Elevated optic nerve head
- Lumpy-bumpy appearance
- RNFL thinning nasally, thickening other sections
- Direct visualization of drusen on SD-OCT

Central Serous Choroidopathy

- Central serous choroidopathy
 - Isolated RPE leakage
 - Chronic diffuse retinal pigment epitheliopathy
- Clinical presentation
 - Choroidal fluid leakage
 - Compromise or disturbance to RPE
 - Serous retinal detachment
 - Serous RPE detachment
- OCT demonstrates
 - Serous retinal detachment
 - Serous PED
 - Defect in RPE

Choroidal Nevi

- Amelanotic
- Pigmented Nevus
- Increased pigment & choroidal reflectivity

Polypoidal Choroidal Vasculopathy (PCV)

- PCV characterized by collection of thin-walled, dilated vessels at the level of the inner choroid
 - Degenerative sub-RPE complex containing a native (non-neovascular) dilated aneurismal venule with degenerative arteriolaris
 - Choroidal vessels become hyalinized
 - Dilution of the venule
 - Polyp-like aneurismal dilatations
 - Intrachoroidal branching vascular networks terminating in polyp-like aneurismal dilatations
 - Choroidal neovascularization
- Progression may result in formation of choroidal vascular complexes, hemorrhagic/serous pigment epithelial detachments, retinal edema, neurosensory retinal detachments and/or subretinal hemorrhages
Focal Choroidal Excavation

- SD OCT Imaging
 - Excavation of the choroid
 - Retina from outer plexiform layer to RNFL remain undisturbed
 - Excavated region extends from outer retinal layer to the external limiting membrane
 - ELM and junction between IS/OS follow excavation contour but tissue remains intact

Conclusion

- Unprecedented ultra-structural visualization of
 - Vitreo-retinal interface
 - Retina
 - Optic Nerve
 - Choroid
- OCT permits
 - Quantification & Qualification
 - Diagnostic and serial management

Newest technologies
- Handheld OCT
- Intraoperative OCT
- Handheld Intraoperative OCT (Bioptigen System)
- Prospective intraoperative and perioperative OCT (PIONEER)
- Functional OCT
 - Doppler SD-OCT (structure and blood flow)
 - Polarization Sensitive (PS) SD-OCT (utilizes light depolarization properties of RPE to visualize RPE for AMD RPE degeneration & progression)
- No longer imagining, IMAGING!