Course Description:
This extensive course presents various photographic equipment and techniques for external ocular photography using readily available consumer digital or film-based cameras. “Cook Book” step-by-step camera settings are detailed for improved ocular photography.

Course Learning Objectives:
- Learn and understand the reimbursement requirements necessary for external ocular photography.
- Present the principal photo media types, camera types, lens types and lighting sources.
- Present and discuss various means of achieving macro photography magnification.
- Present and explain various technical terms unique to photography.
- Present and explain the various elements that control depth of field.
- Present and explain the Scheimpflug Effect - now available for DSLR ocular photography
- Provide “cook book” settings with illustrations for most DSLR cameras to achieve outstanding macro photography results.
- Brief discussion of reports and billing methods with sample sheet provided.

Outline:

- Disclaimers
 - Dr. Click prepared the content of this course independently without input from members of the ophthalmic community.
 - I have no direct financial or proprietary interest in any companies, products or services mentioned in this presentation.
 - The content and format of this course may reflect commercial bias and may claim or imply superiority of a particular commercial product or service.

- Photography Membership
 - Professional Photographers of America

- Why do External Photography?
 - Document medical conditions, treatment and/or progress
 - How (35mm, slide or digital)?
 - Close up (macro) photography 35mm, slide or digital
 - Slit lamp photography
 - Gonio-photography
 - Stereo photography

- Mutually Exclusive Procedures on the SAME DAY
 - 92285 External Ocular Photography
 - 92250 Fundus Photography
 - 92225/92226 Extended Ophthalmoscopy
 - 92135 Scanning Laser
 - May have patient return on another day to do a different procedure
 - May do more than one mutually exclusive procedure in the SAME day IF you have multiple DISSIMILAR diagnosis to support each procedure
• Medical necessity?
 o Reason for test – note reason in chart!
 o Directly stated or easily implied
 o Will it affect diagnosis or treatment?
 o Requires WRITTEN interpretation and report

• General payment policy
 o Medicare reimburses reasonable and medically necessary care
 o Diagnose and treat illness or injury
 o Improve the function of a malformed body member

• Specific payment policy
 o CPT – Current Procedural Terminology
 o ICD – International Diagnostic Codes
 o NCD – National Carrier Directives
 o LCD – Local Carrier Directives
 o “Golden Rule” – check carrier contracts!
 o Use Professional judgment

• Opinions
 o Are NOT payment policy
 o ANYTHING outside CPT, ICD, NCD and LCD = opinion

• Imaging Medical Necessity Criteria
 o NOT simply to document its existence
 o Provides a baseline for later comparison
 o Documents change in condition and/or requires a change in treatment
 o May help establish a proper diagnosis to provide treatment
 o Note reason for photos on the chart

• What Can I Photograph?
 o Conjunctival problems
 ▪ Pinguecula, Pterygium, Foreign Body, Pigmentation issues, Pannus, Burns, etc.
 o Corneal problems
 ▪ Ulcers, abrasions, neovascularization, kerratitis, dry eye, etc.
 o Eyelid problems
 ▪ Ectropion, entropion, styte, hordeolum, ptosis, neoplasms, tumors, etc.
 o Eyelash problems
 ▪ Triachiasis, maderosis, bacterial infection, neoplasms, lice, tumors, etc.
 o Cataract problems
 ▪ Photograph with retroillumination or direct illumination
 o Glaucoma problems
 ▪ Gonioscopic photography
 o Pupil problems
 ▪ Coloboma, iritis, pigmentation, neovascular, trauma, etc.

• Comprehensive list of Ocular Conditions & ICD9 Codes
 o www.aetna.com/cpb/medical/data/700_799/0734.html

• CPT 92285 External Photography Requirements
 o Image quality clinically relevant and graphically equivalent to a photograph
 o Images film based or digitally stored
 o Requires a WRITTEN interpretation and report.
 o Unilateral or bilateral fee
 o 92285 qty 1 for unilateral or bilateral
 o Modifiers E1, E2, E3 or E4 if eyelids
 ▪ E1 = upper OS
 ▪ E2 = lower OS
 ▪ E3 = upper OD
- E4 = lower OD
 - Appropriate ICD9 diagnosis

- **Sample Written Report and Interpretation Form**
 - See handout for sample

- **Sample Photography Release Form**
 - See handout for sample

- **Macro Photo Types**
 - Digital
 - Film
 - Slide
 - Polaroid

- **Camera Types**
 - **“Point & Shoot”**
 - Viewfinder and/or LCD screen
 - Non-interchangeable lenses
 - Need macro-zoom or super-macro-zoom capabilities
 - Best if camera has manual controls
 - Full manual, shutter priority, aperture priority
 - Built-in flash
 - May have accessory add-on lenses
 - **SLR and DSLR** (single lens reflex or digital single lens reflex)
 - View through the lens and/or on LCD screen (some models)
 - Changeable lenses – 5 options
 - Standard lens w/Dioptric add-on lenses
 - Standard lens w/Extension tubes or bellows
 - Standard lens reversed on camera body
 - Standard lens coupled with prime lenses for extremely high magnification
 - Dedicated macro lens
 - **Polaroid Macro 5 Camera**
 - Discontinued in 2006
 - As of 2009 no more Polaroid film made
 - Affects all retinal & slit lamp cameras w/Polaroid backs

- **Lens Types**
 - Prime – single focal length
 - Zoom – variable focal length
 - True or Dedicated Macro (usually single focal length)

- **Lens Magnification Types – Accessory lenses or devices**
 - Dioptric plus magnifiers and “macro” add-on lenses
 - Teleconverters
 - Extension tubes and bellows

- **Light Sources**
 - Ambient lighting
 - Built-in camera flash
 - Shoe mounted camera flash
 - Supplemental lighting
 - Off camera flash, ring flash or twin bracket mounted flashes
 - Studio lighting
 - Reflectors, shades, screens, fill lighting
Magnification Methods
- Diopter add-on lenses
- Extension tubes
- Bellows
- Teleconverters
- Reverse lens mounts
- Stacked lenses
- Dedicated Macro lenses

DSLR w/kit lens and macro accessories (Brand of Camera doesn’t matter!)
- Use prime lens not less than 55mm focal length
- Add a High Quality add-on “macro” lens of +10D or +12D
 - Can stack multiple dioptic lenses at risk of reducing image quality
 - Double aspheric lenses with antireflective coatings have highest quality

Zork Macroscope Lens
- +12D double aspheric lens with antireflective coatings
- Highest quality macro lens, but relatively expensive

Diopter Add-on Lenses
- Advantages
 - Inexpensive (except Zork Macroscope)
 - Compact
 - Works with lenses you may already own
- Disadvantages
 - Not quite as sharp as a true dedicated macro lens

Diopter Add-on lens recommendations
- +10 Diopter Double aspheric lenses recommended
 - Hoya, Nikon, Canon are sample names of companies who make Macro lenses
 - Order thread diameter for your lens (49, 52, 55mm most common)
 - Use step rings, if needed, to fit your lens.
 - Source: www.bhphotovideo.com
 - Search Hoya Macro – cost $89.90 + s&h
 - Add +2D to +10D for +12D close up work on 55mm prime lens
 - Or use Zork +12D Macroscope lens

Extension Tubes
- Total length / focal length = magnification
 - 100mm of extension tube on 100mm lens = 1:1 life size image
- NOTE: there is loss of light with extension tubes (and bellows)
 - Compensation = 2 stops of light for every doubling of the lens-to-sensor plane distance
- Extension tube is a hollow ring mounted between lens and camera body
- Advantages
 - Relatively inexpensive
 - Relatively compact – easy to carry
 - No added glass layers
- Disadvantages
 - Not all tubes retain metering or aperture controls
 - Must refocus if you zoom
 - Difficult to get the exact length you want

Bellows
- A variable length accordion style square tube mounted between lens and camera body
- Advantages
 - Great flexibility – variable length extension
 - Easy way to get a LOT of extension
- Disadvantages
 - Expensive
- Bulky
- Cumbersome to use
- Usually does not couple metering or aperture with camera body

Teleconverters
- Goes between camera body and lens
 - May or may not retain auto meter & aperture controls
 - **Advantages**
 - You may already have one
 - No loss of light
 - **Disadvantages**
 - Useful, but somewhat limited for true macro purposes

DSLR with Reversed Lens
- Special camera brand specific mounting ring that goes on camera body to hold lens reversed from normal position
 - **Advantages**
 - Optimizes lens for greater than life size images
 - Allows 1:1 or greater magnification with only the lens
 - **Disadvantages**
 - Only manual settings available with lens reversed
 - No auto meter coupling
 - No auto aperture coupling
 - Requires two hands to hold aperture open and focus

DSLR with “Stacked” Lenses
- Put the longer single focal length lens on camera body
 - “Stack” the shorter focal length lens in front, but reversed
 - Use special threaded coupling ring to attach lenses to each other
 - Set front lens to infinity focus and largest aperture (widest opening)
 - Capable of 6X life size BUT extremely narrow depth of field
 - Focal length of prime lens divided by focal length of stacked lens = magnification
 - **Advantages**
 - Easy way to get HIGH magnification
 - May work with lenses you already have
 - **Disadvantages**
 - Possible vignetting (darkened corners) of image
 - Not all combinations work well

DSLR with Dedicated Macro Lens
- Lenses available as auto focus and manual focus
 - Single focal length lens
 - Apertures of f22 to f32 for maximum depth of field
 - Highest quality optics
 - Definition: A regular lens with a great than normal extension capability built in capable of 1:1 life size images
 - **Advantages**
 - Excellent optical quality
 - Convenient to use
 - Can be used as a regular lens too
 - **Disadvantages**
 - Price

DSLR Combinations
- Many ways to get additional magnification
- Key issues are depth of field, lighting and working distance
- Don’t get carried away!
- **Photography Technical Issues**
 - Depth of field
 - F stops (aperture settings)
 - Shutter speeds
 - Focus
 - Lighting
 - ISO settings
 - Working distance
 - “Cook Book” settings that work

- **Depth of field (DOF) – the “heart” of detailed macro photography!**
 - Biggest challenge in macro photography is controlling depth of field
 - Image size, image working distance, magnification, light sources, aperture, shutter speed and lens focal length ALL conspire AGAINST larger DOF.
 - DOF may be defined as the area in the photo between the closest and farthest objects that look acceptably sharp.
 - At normal subject distances, DOF extends roughly 1/3 in front of your plane of focus and at macro distances, it becomes closer to 50/50 – WATCH YOUR FOCUS POINT!
 - Aperture size is the SINGLE MOST IMPORTANT ELEMENT for controlling DOF
 - With the exception of the Scheimpflug Effect
 - Most “point and shoot” cameras have a limited range of apertures with f5.6 – 8.0 being the typical maximum with little or no manual controls to choose the aperture.
 - SLR/DSLR cameras have complete control of aperture either on the lens or in the camera body with most lenses having at least f16 as the smallest aperture

- **Aperture & Slit Lamps**
 - Aperture size in almost all slit lamps is, effectively, “wide open”... i.e. the equivalent of f 1.4 or greater
 - Results in a VERY small DOF
 - Higher magnification decreases DOF
 - 40X Magnification DOF = 0.1mm
 - Explains “why” most photos taken through biomicroscopes are only “clear” precisely on focused object
 - No way to expand DOF through biomicroscopes due to ITS optics, not yours!

- **DOF and Aperture Relationship**
 - Aperture size determines DOF for a given subject from a fixed vantage point
 - Larger aperture = SMALLER DOF, smaller f-stop number
 - Smaller aperture = LARGER DOF, larger f-stop number

- **DOF and Working Distance (constant aperture)**
 - Given a constant aperture – if you move closer, less DOF
 - Given a constant aperture – if you move away, more DOF

- **DOF and Magnification**
 - Increased magnification = SMALLER DOF
 - Decreased magnification = LARGER DOF
 - In macro photography the DOF is approximately 50/50 in front/behind the point of focus
 - Keep camera body square to point of focus

- **Magnification, Depth of Field & Aperture Examples**
 - 1/10th life size - DOF = 1.5” @ f5.6
 - 1/10th life size - DOF = 6” @ f22
 - 1:1 life size – DOF = <1mm @ f5.6
 - 1:1 life size – DOF = 3mm @ f22
 - 6x life size – DOF = 0.25mm @ f22

- **Aperture “f-stops”**
 - F/stop = diameter of iris divided by focal length of lens, a RATIO
- "smaller" number f-stop = larger aperture diameter = smaller DOF
- "larger" number f-stop = smaller aperture diameter = larger DOF
- Typical lens markings 2.8 4 5.6 11 16 22 32
- F/stops double or half the adjacent value exposure
- Term "stopping down" = making the aperture hole physically smaller

- Our “Secret Weapon” - Effective Aperture & Magnification
 - Effective aperture = Lens aperture x (1 + Magnification)
 - At 1:1 magnification the effective aperture (for gauging exposure) is therefore, approx. 2 “f-stops” smaller than that set on your lens
 - i.e. a lens setting of f22 becomes effectively approx. f38 = greater DOF

- What about Diffraction?
 - In “regular” photography using the smallest size aperture can induce “diffraction” and degrade image sharpness.
 - In MAGNIFIED MACRO photography diffraction does not appear to be a significant problem!

- Scheimpflug Effect
 - Increases depth of field simply by tilting the camera lens along its axis in the direction of the image plane
 - ONLY technique that increases DOF independently of aperture

- Scheimpflug Uses in Optometry
 - Oculus Pentacam – since 2005
 - Oculus Pachycam (pachymeter & keratometer)
 - CSO Sirius 3D Tomographer
 - Ziemer Galilei G1 Dual Scheimpflug Analyzer Topographer
 - Now – anterior segment DSLR ocular photography

- Sample illustrations of HOW the Scheimpflug Effect works

- Focus
 - Critical due to shallow DOF
 - Tip: in ocular photography focus carefully on corneal reflection of light because DOF using aperture f22 – f38 will result in almost every anterior structure of the eye being in focus from the tip of the eyelashes to the iris!

- Lighting
 - Flash recommended
 - Eliminates or reduces “grain/noise”
 - Built-in camera flash works well for shorter lenses but may cast shadow on lower part of image with physically longer lenses
 - External lighting (ring, single or twin flashes) mount on end of lens to eliminate shadows
 - Recommend single or twin but NOT ring flash (HUGE light artifact)
 - TTL (through the lens) metering or manual settings depend on lens and camera used

- ISO Settings
 - International Standards Organization
 - “Speed” rating of image sensor
 - Similar to ASA ratings of film speed
 - Higher ISO = faster shutter speed or smaller aperture for same amount of light
 - Many cameras offer “auto” ISO settings
 - Better quality images at less than 400 ISO
 - Lower ISO settings yields better quality photos
 - Best images at ISO 100 or 200
 - ISO settings of 400 or greater induce grainy/noisy appearance to images

- Working Distance
 - Macro photography is almost always very close to the subject
- Longer focal length lenses = longer working distance
 - 55mm lens = 3-4" working distance
 - 105mm lens = 6-8" working distance
 - 200mm lens = 12-16" working distance
- Longer working distance = increased depth of field
- Shorter working distance = decreased depth of field

- Photomacrographic ABFO No. 2 Ruler
 - Official L-shaped ruler marked in mm to document police crime scenes
 - Can be used to accurately record size of anterior segment abnormalities
 - $3.95 from www.crimesciences.com
 - Or use your PD ruler

- DSLR “Cook Book” Technique with Kit Lens (not Camera Brand specific!)
 - DSLR “kit lens” – (typically 55mm lens)… set at longest focal length
 - Add +12D Macro close-up lenses to prime lens
 - Focus – set to infinity
 - Shutter – Manual @ 1/60 or 1/125 sync
 - Set program dial to Aperture control
 - Set aperture to maximum f-stop (usually f16-f32… eff. F22 to)
 - Flash – ON
 - TTL Metering – ON
 - Auto focus – OFF
 - System is ready to take photos
 - Focus carefully by manually moving closer or farther away until object of regard is in sharp focus
 - TIP: focus on a light reflex on cornea or carefully on desired specific structure

- Dedicated Macro Lens “Cook Book” Technique
 - DSLR with dedicated 90 or 105mm macro lens
 - Set desired amount of magnification on lens
 - The lens barrel is usually marked with degrees of magnification
 - Set Program Dial to Manual
 - Flash – ON
 - TTL metering – ON if “auto lens”
 - Manual metering if not automatic lens
 - May have to manually set flash levels in camera menus
 - Aperture – set f22-f32 (whatever the maximum f-stop the lens has)
 - Shutter – set within the rating for the camera flash sync.
 - System is ready to take photos
 - Focus carefully by manually moving closer or farther away until object of regard is in sharp focus
 - TIP: focus on a light reflex on cornea or carefully on desired specific structure

- Eye-Fi SD Card
 - Wireless memory cards 4GB $40, 8GB ($80) & 16GB ($99) available
 - Wireless computer connection via Wi-Fi
 - Adapters available for MMC and CF card cameras
 - Automatically transfers photos to computer wirelessly!
 - www.eye.fi - Approx $50-$99 (no, this is NOT a .com URL)

- DSLR Cameras to Consider
 - Pssst #1… your skill as a photographer is more important than the camera brand.
 - Pssst #2… More pixels isn’t as important as learning to focus well and hold the camera STILL!
 - Pentax – NOTE: the BODY is image stabilized, not the lenses!
 - K100DS (6MP) <$300 on eBay
 - K200D (10MP) <$300 on eBay
 - Canon EOS
 - T2i, T3i or T4i (18MP) ~ $650 online
 - Nikon
 - D40 (2006-2010) 6MP ~ $400
- D3200 24MP ~ $700 online
- D800 36MP ~ $3,000 online

Macro Lenses to Consider
- Auto Focus is NOT a priority. Manual focus give you MUCH more control.
- Lester-A-Dine Macro 105mm (aka Kiron 105 Macro)
 - OUTSTANDING LENS... almost legendary glass
- Vivitar Series 1 105mm
- Any "brand name" dedicated MACRO lens of 90-105mm
 - Nothing less than f22
- Pentax lenses of all generations
 - Almost ALL Pentax lenses work on Pentax DSLR bodies – and they are VERY affordable

Wanna Go “All-In”?!?
- Hasselblad
 - H40D-200MS
 - 50MP to 200MP (composite photo)
 - $36,000 – BODY ONLY
 - Lenses $5K - $10K EACH

Sample Photos

Anterior Photo Challenges
- Ocular photography is NOT too difficult.
- Ocular photography IS profitable.
- Anterior Setment Photographys medically reimbursable
- Enhances YOUR practice and improves patient education
- It is NOT hard to learn to utilize the technology
- OD’s frequently have a hard time billing what they and technology are worth
- Learn to “order tests” vs “selling tests”

Practice Benefits
- Better documentation
 - Which is better, your hand drawn picture or a detailed, well lighted in-focus photo?
- Great patient education tool
- Great telemedicine via Encrypted PDF files or surface mail with MD’s
 - Comanagement & Referrals
- Ties patients to YOUR practice

Let’s Talk $$$ = Reimbursement
- CPT 99285 – Texas Medicare - $44.44 as of August 2012
- 1 per day x 240 days = $10,666
- 3 per day x 240 days = $31,998
- 5 per day x 240 days = $53,330
- Takes approx. 1 minute to take photos
- Takes approx. 4 minutes to process/print interpretation and report
- Can be delegated to staff!

Questions?
Cled T. Click, O.D.
Email: cledc@yahoo.com
Mobile: 806-678-4261
Ocular Photography Post Processing & Printers

Cled T. Click, O.D.
3440 Bell Street, Unit 308
Amarillo, TX 79109
Tel: 806-355-8906
Mobile: 806-678-4261
Email: Cledc@yahoo.com

Course Description:
This course presents digital image processing emphasizing six essential elements that significantly improve photo quality. Additionally, all major printer types are discussed, and a sample written interpretation and report is provided. Telemedicine techniques are also presented.

Course Learning Objectives:
- Present the elements necessary for reimbursable anterior segment ocular photography.
- Learn about "histograms" to adjust exposure, either before or after taking photos
- Learn about "highlights & shadows" to enhance ocular photos
- Learn about “contrast & brightness” controls
- Learn about “cropping”
- Learn about file resizing and types of photography files
- Learn about a variety of quality photo editing software programs at various price points.
- Learn about the key software elements needed to maximize details of ocular photographs.
- Learn about the four major kinds of color printers.
- Present the relative strength and weaknesses of each printer type.
- Learn WHY the colors you see on the monitor doesn’t always match the printed photo
- Present techniques to share photographs electronically with referring doctors.
- Brief presentation of PDF software and encryption.

Outline:
- Disclaimers
 - Dr. Click prepared the content of this CE activity independently without input from members of the ophthalmic community.
 - I have no direct financial or proprietary interest in any companies, products or services mentioned in this presentation.
 - The content and format of this course may reflect commercial bias and may claim or imply superiority of a particular commercial product or service.

- Samples of before/after ocular photo processing

- Okay, the photo has been taken. Now what?
 - Use photo “as is” – no post processing
 - Edit/modify/enhance photo using software
 - Recommended photo editing software features for best results
 - Optimize Highlights and Shadows
 - Not all editing software has this important feature
 - Optimize Histogram Levels
 - Optimize Contrast and Brightness
 - Crop if needed or as desired
 - Resize as desired to save file space and choose resolution to save
 - Save photo with descriptive name and date
 - Option, print photo on back of written interpretation and report page
• **The Histogram**
 o Graphical representation of range of brightness of photo
 o Darkest on left
 o Brightest on right
 o Scale 0 to 255
 ▪ 0 = absolute BLACK
 ▪ 255 = absolute WHITE
 o Can be manipulated in many cameras or with some photo editing programs!
 o No such thing as a “Correct Histogram”
 o Only shows the dynamic range of light exposure from 0 (dark) to 255 (white)
 o Can use +/- camera exposure settings to compensate for lighting conditions
 o Sliders within software allow you to change the balance of “dark-to-light” levels.
 ▪ Can enhance “mid-range” but change brightest and darkest portions very little.

• **Highlights and Shadows**
 o Human eye can see approx. 10,000 levels of light
 o Best camera can register about 5,000 levels of light
 o Dynamic range of light exceeds camera meter or camera sensor (same true for film).
 ▪ Results? Often “too dark” or “too light” (under/over exposed)
 o If in doubt... ALWAYS chose “too dark” = underexposure
 ▪ Why? - can recover details of darkness with software!!
 ▪ CANNOT “recover” data from areas that are “too light”... nothing there to recover.
 o Use LOWER ISO settings possible to reduce “grain” in photo recovery!
 o Sliders adjust highlights & shadows
 o Percentages can be used instead of sliders (PhotoShop CS)
 ▪ In my experience, typically ocular photos require about 37-48% lighter to bring out iris colors/details
 ▪ Depends entirely on the camera settings and light source
 o WYSIWYG - “what you see is what you get” - real time editing
 o Highlight & shadow adjustments are what make your ocular photos “pop”

• **Contrast & Brightness**
 o Similar to “Highlights & Shadows”, except....
 ▪ Changes the ENTIRE picture lighting all at once
 ▪ DO NOT USE until AFTER adjusting Histogram and the Highlights and Shadows
 ▪ Use sparingly... if at all
 ▪ Can easily “wash out” highlights and lose detail on light surfaces (ex. conjunctiva)

• **Cropping**
 o Don’t hesitate to use the “crop” tool
 o Lets you “enlarge” the essential part of the photo
 ▪ Can exceed 1:1 macro photography w/o extra magnification lenses or microscopes
 o Again, use LOW ISO settings to avoid grain
 o Lets you “cut out” unwanted portions of photos
 ▪ Such as dark shadows or your fingers holding eyelids

• **Resizing & Saving**
 o What file size do you want and why?
 ▪ If printing onto paper
 ▪ Larger files = better print detail
 ▪ If mostly looking at photo on monitor
 ▪ Only need file size matched to screen resolution
 ▪ If transmitting photos for referral, larger files take more time and space
 ▪ Consider “printing” to PDF and sending PDF file instead
 ▪ Still clear on screen, but does NOT print out with good detail on paper
• **File Types**
 o Most cameras default to JPG type files
 ▪ JPEG Joint Photographic Experts Group
 o Beware compression!!
 o TIP: Before editing, resave as TIFF type file
 ▪ TIFF = Tagged Image File Format
 ▪ Edit/Save in TIFF mode to avoid additional compression while editing
 o When finished editing, save in JPG format to save file space
 o OR, better still... use RAW settings
 ▪ But only some PROsumer level cameras have RAW capability
 ▪ ONLY some photo editing programs can edit or process RAW files (BIG FILES)

• **Post Photo Processing – Photo Editing Software**
 o Adobe PhotoShop CS or Adobe Elements
 o Many good alternatives – GIMP is free
 o ACDSee Pro5
 o Corel Paint Shop Pro X4
 o Nikon Capture NX2
 o Photo Impact 13
 o Serif Photo Plux X3
 o And... there are many others
 o Just be sure they offer “highlights and shadows” and “histogram” adjustments

• **Printers – 4 main types**
 o **Color Ink Jet**
 ▪ Liquid ink cartridges
 o **Color Laser**
 ▪ Solid ink
 o **Dye Sublimation**
 ▪ Color ribbon
 ▪ New gel/ink

• **Color Ink Jet – How it Works**
 o Essentially SPRAYS TINY ionized droplets of ink onto paper
 o Monochrome (black only)
 o Multi-color inks (typically yellow, magenta & cyan)
 ▪ Color subtractive process
 o “Portrait” printers may have up to six color cartridges

• **Color Ink Jet Types**
 o Printer only – local and network versions
 o Multifunction – printer, copier, fax, scanner
 o Wireless models available

• **Color Ink Jet Considerations**
 o Relatively inexpensive ($50-$400)
 o Relatively expensive consumables
 o Highlighters and moisture smears ink
 o Most ink jet photos fade over time
 ▪ Some “archive quality” inks and paper available

• **Color Laser – How it Works**
 o Typically a 4 cartridge dry powder toner system
 ▪ Black, yellow, magenta & cyan
 ▪ Color subtractive process
 o Laser light image alters electric charge on drum
 o Drum rolls through toner reservoirs
 o 4 pass system, most models
Fuses powder to paper using heat & pressure rollers
Very similar to photocopier technology

Color Laser Models
- Printer only
- Multifunction – printer, copier, fax, scanner
 - “Normal”, LCD & LED models
 - Each uses slightly different technique to charge the drum
- Rest of process same as regular laser printer

Color Laser Considerations
- More expensive initially than ink jet
- Expensive consumables!
- Prints won’t smear easily
- Prints resistant to UV fading
- Available wired, network and wireless versions
- Some models can auto duplex
- Slightly less gradient detail than multi-color ink jet

Solid Ink Printer – How it Works
- Uses wax based ink vs toner powder or ink cartridge
- Melts solid ink block
- Sprays through stainless steel print head onto paper
- Fuses ink onto paper with pressure and heat
- Cleaner, less waste & immediately dry prints
- Resistant to smears
- Arguably, slightly less print quality than laser or ink jet

Solid Ink Advantages
- Faster print time
- Ease of use
- Less waste
- No ozone emissions
- Paper type is not critical

Solid Ink – Disadvantages
- Print durability questionable – wax surface can be scratched
- Slower warm up time
- Higher power consumption
- Potentially excessive solid ink waste
- Possible print head damage from moving hot unit
- Odor – melting ink creates noticeable odor
- Print head can become clogged
- Incompatible with laser printers
 - Print cannot be put through copier or laser printer
 - May melt wax surface potentially damaging both the print and the second machine
 - **DO NOT run paper with solid ink photo through either a laser printer or a photocopier!** (to print on the reverse side)
- Poor UV resistance to fading
- Third party consumables voids warranty

Color Dye Sublimation – How it Works
- Uses film ribbon of 3 colors and a clear coat
 - Yellow, Magenta & Cyan
 - 4 pass system – subtractive process
 - Final pass puts clear coat on print
Primarily good for graphics – not good for lots of text
Prints immediately dry to touch
Available with different pixel count and shapes
 - 600 x 600 dpi with round pixels
 - Skewed 600 x 1200 dpi with oval pixels
 - Skewed 600 x 1200 dpi with round pixels
 - True 1200 x 1200 dpi with round pixels
More recently ribbon media changing to gel/ink
 - Ricoh & Epson printers using SubliJet ink supplies
 - **WARNING... Do NOT put factory ink jet supplies in printer FIRST**
 - Will NOT work as dye sub later if you do!

Dye Sublimation Considerations
- Much more expensive ($2,000+)
- Consumables fairly expensive
- Uses roll feed glossy paper
 - HIGH quality
 - Different widths
- Will not smear or smudge if wet
- Resistant to UV fading
- Very similar to photos from Kodak, Fuji, etc. commercial prints

Selphy Color Dye Sublimation Printers
- CP900 wireless model less than $99 online
- Kit contains ink & paper for 108 4x6” color prints.
- Cost approx. $35 online (Canon direct); approx. $29 (Amazon w/ free s&h)
 - Equals $0.33 to $0.27 per print

Color Dye Sublimation
- HIPAA PRIVACY WARNING!!
 - Plastic ribbon retains “negative” of print for YEARS!!
 - Dispose of by shredding or incineration

Why don’t color prints match colors on the computer screen?
- **Computer screens are color ADDITIVE;** red-green-blue
- **Printers are color SUBTRACTIVE;** cyan, magenta, yellow
- Software color registration programs exist to match prints to screen

Additive Colors
- Red-Green-Blue lights are mixed using additive color properties
- Combined in EQUAL PARTS
 - Blue + Green = Cyan
 - Red + Blue = Magenta
 - Green + Red = Yellow
 - Red + Green + Blue = White

Subtractive Colors
- Cyan, Magenta and Yellow
- Combined in EQUAL PARTS
 - Blue + Green [absorbs Red] to create Cyan
 - Red + Blue [absorbs Green] to create Magenta
 - Green + Red [absorbs Blue] to create Yellow

Printers – What to Get?
- Depends on your need/application
- Define your use
• You are not limited to one type
 ▪ Mix and match for your applications
• Calculate your cost per print for true cost
 ▪ Initial cost, paper and consumables

• Telemedicine with Photos
 o Print to PDF or scan printed report to PDF
 o Encrypt and password protect for HIPAA compliance
 o Attach to email
 o Call consulting doctor
 o Discuss the case in “real time”

• PDF Software
 o Adobe Reader (best known) – free versions
 o PDF995 – FREE PDF converter w/advertising
 o PDF X-Change
 o PDF24 Editor & FAX (free)
 o Foxit
 o Nitro PDF
 o Primo PDF
 o And there are others...

• PDF Encryption Options
 o Allow printing
 o Allow modify contents
 o Allow copy
 o Allow modify annotations
 o Allow fill in (128 bit only)
 o Allow screen readers (128 bit only)
 o Allow assembly (128 bit only)
 o Allow degraded printing (128 bit only)

• DISCLAIMERS – Repeated
 o I am NOT affiliated with nor compensated by any or the manufacturers of products mentioned in this presentation.
 o Hardware and/or software presented were either free trial versions or purchased.
 o None of the products presented are necessarily endorsed or recommended by the sponsors of this educational program.

• Questions or comments?
 o Cled T. Click, O.D.
 o 3440 Bell St., Unit 308
 o Amarillo, Texas 79109
 o Email: Cledc@yahoo.com
 o Cell phone: 806-678-4261
 o Thank you!
<table>
<thead>
<tr>
<th>INDICATIONS FOR TESTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Symptoms ____________________________</td>
</tr>
<tr>
<td>☐ Suspected Disease ____________________________</td>
</tr>
<tr>
<td>☐ Chronic Disease ____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST ORDERED - 92285</th>
<th>TEST FORMAT</th>
<th>TEST RELIABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Right Eye</td>
<td>☐ Photographs</td>
<td>☐ Good</td>
</tr>
<tr>
<td>☐ Left Eye</td>
<td>☐ Digital Image</td>
<td>☐ Bad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Anisocoria</td>
</tr>
<tr>
<td>☐ Chalazion</td>
</tr>
<tr>
<td>☐ Conjunctival Cysts</td>
</tr>
<tr>
<td>☐ Conjunctival Hemorrhage</td>
</tr>
<tr>
<td>☐ Conjunctival Pigmentation</td>
</tr>
<tr>
<td>☐ Corneal Neovascularization</td>
</tr>
<tr>
<td>☐ Corneal Ulcer</td>
</tr>
<tr>
<td>☐ Corneal Opacity</td>
</tr>
<tr>
<td>☐ Corneal Ulcer</td>
</tr>
<tr>
<td>☐ Ecchymosis</td>
</tr>
<tr>
<td>☐ Ectropion</td>
</tr>
<tr>
<td>☐ Entropion</td>
</tr>
<tr>
<td>☐ Foreign Body</td>
</tr>
<tr>
<td>☐ Hordeolum</td>
</tr>
<tr>
<td>☐ Keratitis</td>
</tr>
<tr>
<td>☐ Pinguecula</td>
</tr>
<tr>
<td>☐ Pterygium</td>
</tr>
<tr>
<td>☐ Ptosis</td>
</tr>
<tr>
<td>☐ Trichiasis</td>
</tr>
<tr>
<td>☐ Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline Study</th>
<th>Yes / No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narrative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELEVANT CLINICAL ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intiate Treatment Yes / No</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes / No</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
PHOTOGRAPHY RELEASE
Authorization to Obtain/Utilize Images

ADULT

☐ General Use ☐ Photo-document physical condition
☐ Specific Project

I, (print full name) __, being eighteen (18) years of age or over, hereby grant permission to Dr. Cled T. Click and his affiliates (if any), to interview, photograph, and/or video me; and/or to supervise any others who may do the interview, photography, and/or video; and/or to use and/or permit others to use information from the aforementioned interview and/or the aforementioned images in educational and/or promotional activities without compensation.

Signature: ___________________________ Date: __________
Witness: ___________________________ Date: __________

MINOR CHILD

☐ General Use ☐ Photo-document physical condition
☐ Specific Project

I, (print full name) __, hereby grant permission to Dr. Cled T. Click and his affiliates (if any), to interview, photograph, and/or video me; and/or to supervise any others who may do the interview, photography, and/or video; and/or to use and/or permit others to use information from the aforementioned interview and/or the aforementioned images in educational and/or promotional activities without compensation.

Signature: ___________________________ Date: __________
Witness: ___________________________ Date: __________