Anterior Segment Ocular Photography

Thank You!

- TOA Board of Directors
- Dr. Kevin Gee, TOA President
- Ms. Sherry Ballance
 – TOA Events Coordinator

COMMERCIAL DISCLOSURE

- Dr. Click prepared the content of this course independently without input from members of the ophthalmic community.
- I have no direct financial or proprietary interest in any companies, products or services mentioned in this presentation.

- The content and format of this course may reflect commercial bias and may claim or imply superiority of a particular commercial product or service.
Anterior Segment Ocular Photography

Want to turn this?

Professional Photographers of America

Into this? – Every year!

CPT 92285 External Photography

- 92285- External ocular photography often INCORRECTLY considered ONLY as external photos of the eye.
- Requires interpretation and report for documentation of medical progress
CPT 92285 External Photography

- 92285- External ocular photography
 INCLUDES:
 - close-up Photography
 - slit lamp photography
 - goniophotography
 - stereo-photography
- Some Fundus cameras have dual modes

Mutually Exclusive Procedures on the SAME DAY

- 92285 External Ocular Photography
- 92250 Fundus Photography
- 92225/92226 Extended Ophthalmoscopy
- 92132 Scanning Laser – anterior segment
- 92133 Scanning Laser – posterior segment

Mutually Exclusive Procedures on the SAME DAY

- May have patient return another day to do a different procedure
- May do more than one mutually exclusive procedure in the SAME day IF you have multiple DISSIMILAR DIAGNOSIS to support each procedure

MEDICAL NECESSITY?

- Reason for diagnostic test?
- Directly stated or easily implied
- Will it affect diagnosis or treatment?
- REQUIRES WRITTEN INTERPRETATION & REPORT!

General payment policy

- Medicare reimburses reasonable and medically necessary care to diagnose and treat illness or injury or to improve the function of a malformed body member.

Specific payment policy

- CPT – Current Procedural Terminology Codes
- ICD – International Diagnostic Codes
- NCD - National Carrier Directives
- LCD - Local Carrier Directives
- The golden rule - check carrier contracts
- Use Professional Judgment
Opinions

• Are not payment policy
• Anything outside of NCD, LCD, CPT and ICD is opinion

Imaging medical necessity

• It is not necessary to photograph a condition simply to document its existence but rather to provide a baseline to compare later if the condition has changed and requires a change in treatment.
• It may be necessary to photograph a condition to help establish a proper diagnosis or provide treatment. NOTE REASON ON THE CHART!!

What Can I Photograph?

• Conjunctival problems
 – Pinguecula, pterygium, FB, pigmentation, pannus, burns, etc.
• Corneal problems
 – Ulcers, abrasions, neovascularization, keratitis, dry eye, etc.
• Eyelid problems
 – Ectropion, entropion, sty, hordeolum, ptosis, neoplasms, tumors, etc.
• Eyelash problems
• Cataract problems
• Triachiasis, maderosis, bacterial infection, neoplasms, lice, tumors, etc.
• Pupil problems
• Gonioscopic photography
• Coloboma, iritis, pigmentation, neovascular, trauma, etc.

What Can I Photograph?

• Comprehensive List of Conditions
 – Lists Ocular Conditions & ICD9 Codes

CPT 92285 – Photo Requirements

• The quality of the image should be of sufficient quality to be clinically relevant and graphically equivalent to a photograph. Images can be film based or digitally stored.
• Requires a WRITTEN interpretation and report.

CPT 92285 – Photo Requirements

• 92285 is a BILATERAL fee
 – use 52 Modifier for unilateral photo
• 92285 qty 1 for unilateral or bilateral
• Appropriate ICD9 diagnosis
• Modifiers E1, E2, E3 or E4 if eyelids.
Anterior Segment Ocular
Photography

MACRO PHOTO TYPES
- Digital
- Film
- Slide
- Polaroid

CAMERA TYPES
- Point & Shoot
 - Viewfinder and/or LCD screen
 - Non-changeable lenses
 - May have accessory add-on lenses
- SLR & DSLR
 - Single Lens Reflex
 - View through lens
 - Changeable lenses

“Point & Shoot” CAMERA & LENS TYPES
- Point & Shoot
 - Viewfinder or LCD focus screen
 - Macro Zoom & Super Macro Zoom
 - Non-interchangeable lenses
 - Add on dioptic or macro lenses
 - Best if camera has manual controls
 - Full manual, aperture priority, shutter priority
 - Built-in flash
Anterior Segment Ocular Photography

“Point & Shoot” Cameras

SLR & DSLR CAMERA & LENS COMBOS

- **SLR** = Single Lens Reflex
- **DSLR** = Digital Single Lens Reflex
 - Standard Lens w/Dioptric add-on lenses
 - Standard Lens w/Extension tubes or bellows
 - Standard Lens – reversed on camera body
 - Standard Lens – coupled prime lenses
 - Dedicated Macro Lens

Digital/Film/Slide SLR Cameras

5 Magnification Techniques

1. Standard lens w/Dioptric add-on lenses
2. Standard lens w/Extension tubes or bellows
3. Standard lens reversed on camera body
4. Standard lens coupled with prime lenses for extremely high magnification
5. Dedicated macro lens

Polaroid Macro 5 Camera

- Polaroid
 - As of 2006 Macro 5 no longer produced
 - As of 2009 no more Polaroid film made
 - Also affects all retinal & slit lamp cameras w/Polaroid backs

LENS TYPES

- Prime (single focal length)
- Zoom (variable focal length)
- Dedicated Macro (single focal length)
- Accessory magnification solutions
 - Dioptric plus magnifiers and “macro”
 - Teleconverters
 - Extension Tubes
 - Bellows
Accessory Magnification Items
- Plus power magnifiers
- Teleconverters

DEDICATED MACRO LENSES
- Nikon 105mm AF Macro
- Nikon 200mm MF Macro

LIGHT SOURCES
- Ambient lighting
- Built-in camera flash
- Hot shoe mounted flash
- Supplemental lighting
 - Off camera flash, ring flash or twin bracket mount or lens mounted flashes
 - Studio lighting
 - Reflectors, shades, screens, fill lighting

Lighting
- Electronic Flash
- Novoflex twin arm flash brackets
- Novoflex

Cled T. Click, O.D.
Anterior Segment Ocular Photography

Flash & Cord Samples

Lighting – Wireless Nikon R1C1

Lighting – Wireless Nikon R1C1

Point & Shoot Macro

Cled T. Click, O.D.
Anterior Segment Ocular Photography

MAGNIFICATION METHODS
• Diopter Add-on lenses
• Extension tubes
• Bellows
• Teleconverters
• Reverse lens mounts
• Stacked lenses
• Dedicated macro lenses

DSLR w/kit lens & add-on Diopter
Hoya +10D Aspheric lens
Add +2D Close Up lens
Total +12D add-on

Zoerk Macroscope Lens
+12 D double aspheric lens
w/antireflective coatings

DIOPTER ADD-ON LENSES
• ADVANTAGES
 – Inexpensive (except Macroscope)
 – Compact
 – Works with lenses you already have

• DISADVANTAGES
 – Not quite as sharp as a true macro lens
DIOPTER ADD-ON LENS

- RECOMMENDATIONS / SUGGESTIONS
 - Hoya (or equivalent) +10D Aspheric Macro Lens
 - Order thread diameter for your lens 49, 52, 55, etc.
 - Use step rings, if needed, to fit your lens
 www.bhphotovideo.com
 • search Hoya Macro $89.90 + s&h
 - Add +2D to +10D = +12D total on 55mm lens
 - Or use Zoerk +12D Macro scope lens ~ $500

EXTENSION TUBES

- Total Extension
 ------------------- = Magnification
 Focal length
 • Takes 100mm of extension tube for a 100mm lens to reach 1:1 life size magnification.
 • You lose light with extension tubes (and bellows).
 • Compensation = 2 stops of light for every doubling of the lens-to-sensor distance

EXTENSION TUBES

- A hollow ring mounted between a lens and the camera body.
- ADVANTAGES
 - Relatively inexpensive
 - Relatively compact and easy to carry
 - No added glass layers

EXTENSION TUBES

- DISADVANTAGES
 - Not all tubes retain auto metering or auto aperture
 - Must refocus if you zoom
 - Difficult to get the exact length you want
 • Digital cropping or enlargement offsets some of this disadvantage.

BELLOWS

- ADVANTAGES
 - Great flexibility – variable length extension
 - Easy way to get a LOT of extension

DSLR w/Extension Tube or Bellows
BELLOWS

DISADVANTAGES
- Expensive
- Bulky
- Cumbersome to use
- Does not couple metering or aperture

TELECONVERTER

- Lens goes between camera body and camera lens
- May or may not retain auto meter & auto aperture

ADVANTAGES
- You may already have one
- No loss of light

DISADVANTAGES
- Useful, but somewhat limited for true macro

DSLR w/reversed lens

No auto settings available w/ lens reversed.
Requires two hands to hold aperture “open”.

REVERSING LENSES

ADVANTAGES
- Optimizes lens for greater than life size
- Allows 1:1 or greater with only the lens

DISADVANTAGES
- No meter coupling
- No aperture coupling
- Requires two hands to hold aperture open to focus and operate the shutter

DSLR w/stacked lenses

Put the longer focal length on the camera body and “stack” the shorter focal length in front. Set front lens to infinity focus. Capable of 6X life size macro photography. **SHALLOW DOF!**

STACKED LENS

MAGNIFICATION

Stacked Lenses

\[
\frac{\text{fl of Prime lens}}{\text{fl of Stacked lens}} = \text{Magnification}
\]
STACKED LENSES

ADVANTAGES
- Easy way to get HIGH magnification
- May work with lenses you already have

DISADVANTAGES
- Possible vignetting (darkened corners)
- Not all combinations work well

MACRO LENS

- A regular lens with a greater than normal extension capability built in.

ADVANTAGES
- Excellent optical quality
- Convenient to use
- Can be used as regular lens too

DISADVANTAGES
- Price

PHOTOGRAPHY TECHNICAL ISSUES

- Depth of Field
- F stops (aperture settings)
- Shutter speeds
- Focus
- Lighting
- ISO settings
- Working Distance
- “Cook Book” settings that work

DEPTH OF FIELD (DOF)

- The “heart” of detailed macro photos!
- In macro photography, the biggest challenge is the depth of field.
- Image size, image working distance, magnification, light sources, aperture, shutter speed, lens focal length ALL conspire against larger DOF.
DEPTH OF FIELD (DOF)

- The distance between the closest and farthest items that look acceptably sharp is DOF.
- At normal subject distances, depth of field extends roughly 1/3 in front of your plane of focus and 2/3 behind it.
- At macro sizes, it becomes closer to 50/50. – WATCH YOUR FOCUS POINT!

APERTURE & DOF

- Aperture size is the single most important element controlling depth of field (DOF).
 - With exception of the Scheimpflug Effect
- Most “point and shoot” cameras have a limited range of apertures with f5.6 - f8.0 typically being the maximum and little or no manual controls to choose the aperture.
- SLR/DSLR have complete control of aperture size either on the lens or in the camera settings (f16 to f22+ common).

APERTURE & SLIT LAMPS

- Aperture size in almost all slit lamps is, effectively, “wide open”… I.e. the equivalent of f 1.4 or greater
 - Results in VERY small DOF
 - Higher magnification decreases DOF
 - 40x SLE magnification DOF = approx. 0.1mm
- Explains “why” most photos taken THROUGH bimicroscopes are only “clear” precisely on the focused object
- NO WAY to expand DOF through biomicroscopes due it ITS optics, not yours!

EXAMPLES - DOF

Depth of Field – DOF

“How it Works”

- Larger aperture = SMALLER DOF, small f#
- Smaller aperture = LARGER DOF, large f#
- Constant aperture – move closer, less DOF
- Constant aperture – move away, more DOF
DOF & Magnification

- Magnification affects DOF
- Increased Magnification = SMALLER DOF
- Decreased Magnification = LARGER DOF
- Keep camera body square to point of focus.

Aperture size = “f stops”

- F/stop = diameter of iris divided by focal length of lens,…a RATIO.
- “smaller” number f/stops = larger aperture diameter = Smaller DOF (depth of field)
- “larger” number f/stops = smaller aperture diameter = Larger DOF (depth of field)

Magnification, DOF & Aperture Examples

- 1/10\(^{th}\) life size – DOF = 1.5” @ f5.6
- 1/10\(^{th}\) life size – DOF = 6” @ f22
- 1:1 life size – DOF = <1mm @ f5.6
- 1:1 life size – DOF = 3mm @ f22
- 6X life size – DOF = 0.25mm @ f22!

Aperture & “f stops”

- Typical lens markings:
 - 32 22 16 11 8 5.6 4 2.8 2 1.4
- F/stops double or half the adjacent value exposure
- “stopping down” = making the aperture hole smaller
Our “Secret Weapon” Effective Aperture & Magnification

- **Effective Aperture** = Lens Aperture x (1 + Magnification)
- At 1:1 magnification the effective aperture (for gauging exposure) is therefore, approx. 2 “f-stops” smaller than that set on your lens
- i.e. a lens setting of f22 becomes effectively approx. f38 = **greater DOF**

What about DIFFRACTION?

- In “regular” photography using the smallest size aperture can induce “diffraction” and degrade image sharpness.
- In MAGNIFIED MACRO photography diffraction does not appear to be a significant problem!

Scheimpflug Effect

- Increases depth of field simply by tilting the camera lens along its axis in the direction of the image plane.
- **ONLY** technique that increases DOF independently of aperture.

Scheimpflug Uses in Optometry

- Oculus Pentacam (2005) & Oculus Pachycam
- CSO Sirius 3D Tomographer
- Ziemer Galilei G1 Dual Scheimpflug Analyzer Topographer

Cled T. Click, O.D. 16
Anterior Segment Ocular Photography

Scheimpflug Effect DOF Illustrated

Zoerk Scheimpflug Effect Lens

Nikon swing/tilt Lens

Multi-focus System — tilt, swing, macro
Anterior Segment Ocular Photography

Zero Lens Tilt

0.5 Degree Lens Tilt

1 Degree Lens Tilt

2 Degree Lens Tilt

3 Degree Lens Tilt

4 Degree Lens Tilt
Anterior Segment Ocular Photography

5 Degree Lens Tilt

6 Degree Lens Tilt

8 Degree Lens Tilt

Carrying it “too far”!

FOCUS

- Critical due to shallow DOF
- **TIP:** in ocular photography focus carefully on the corneal reflection of a light because DOF using aperture of f22 – f38 will result in almost every anterior structure of the eye being in focus from the tip of the eyelashes to the iris!

LIGHTING

- Flash lighting recommended.
 -- Eliminates “grain/noise” in photo
- On-board flash works well for physically shorter lenses, but may cast a shadow with physically longer lenses.
- External lights (ring, single or twin flash) mounted on end of lens eliminate shadows
 -- Recommend single or twin but NOT ring flash (HUGE light artifact)
- TTL (through-the-lens) metering or manual settings depend on lens & camera used.
ISO SETTINGS

- International Standards Organization
- “Speed” rating of image sensor
- Similar to ASA ratings of film speed
- Higher ISO allows faster shutter speeds or smaller aperture for same amount of light
- Many cameras offer “auto” ISO settings
- Better quality images at ISO less than 400
 - Avoids digital “noise” / grainy appearance
- Best images at ISO 100 or 200

WORKING DISTANCE

- Macro photography is almost always close to the subject.
- Longer lenses = longer working distance
 - 55mm lens = 3-4” working distance
 - 105mm lens = 6-8” working distance
 - 200mm lens = 12-16” working distance
- Longer working distance = increased DOF
- Shorter working distance = decreased DOF

PHOTOMACROGRAPHIC ABFO No. 2 RULER

$3.95 from www.crimesciences.com
Or use your PD ruler

“COOK BOOK” SETTINGS

- DSLR – kit lens (typically 55mm lens)… set at longest focal length… 55mm - Add +12D Macro close-up lenses
- Focus – infinity
- Shutter – Manual @ 1/60 or 1/125 sync
- Aperture – maximum or near maximum available (f16 – f32… eff. f22 to f45)
- On board flash – ON
 - TTL metering – ON
- Auto focus – OFF
- Manually move to focus on a light reflex on cornea or desired specific structure

Set zoom lens to 55mm

Program Dial to Aperture
Anterior Segment Ocular Photography

Aperture set to Max. f stop

Or... manually set Aperture to Max. f stop & shutter to M 1/125

Or... manually set Aperture to Max. f stop & shutter to M 1/125

Add +10 Macro & +2 Diopter

Or use +12D Zoerk Macroscope
Anterior Segment Ocular Photography

Set Focus at Infinity

Auto Focus set to Manual

Camera ready for macro photo

“COOK BOOK” SETTINGS

- DSLR with dedicated 90 or 105mm macro lens
- Set desired amount of magnification on lens
- Set Program Dial to Manual
- Built-in flash – ON
 - TTL metering – ON if “auto lens”
- Manual metering if not automatic lens
 - may have to manually set amount of flash in menus
- Aperture – set f22-f32
- Shutter – within rating for camera flash sync
- Focus set at infinity – Manually move to focus on a light reflex on cornea or desired specific structure

DSLR w/105mm Macro lens

Set Magnification & Aperture
Program Dial to Manual

Auto Focus set to Manual

DSLR w/105mm 1:10 ratio

DSLR w/105mm 1:1 ratio

Twin flash 1:1 Magnification

EYE-FI SD CARD

- Eye-Fi SD wireless memory cards
 - 4GB ($40) & 8GB ($80) & 16GB ($99) cards available
 - Wireless connection to Computer via Wi-Fi
 - Adapters available for MMC & CF cameras
- Automatically transfers photos to computer wirelessly!
- www.eye.fi (no, this is NOT a .com URL)
Anterior Segment Ocular Photography

DSLR Cameras to Consider

Pssst #1... your skill as a photographer is more important than the brand of camera.
Pssst #2... More pixels isn't as important as learning to focus well & hold the camera STILL!

Pentax
- K100DS (6MP), <$300 eBay
- K200D (10MP), <$300 eBay

Canon EOS
- Rebel T2i, T3i, T4i - 18 MP - ~ $650

Nikon
- D40 [2006-2010] - 6MP - ~ $400
- D3200 - 24MP - $700
- D800 - 36MP - $3,000

Macro Lenses to Consider

Auto-focus lens is NOT a priority! Manual focus in macro photography gives you MUCH more control!

- **Lester-A-Dine Macro 105mm… aka Kiron Macro 105mm – OUTSTANDING lens (almost legendary glass)**
- **Vivitar Series-1 105mm macro lens – also Excellent glass**
- **Any Brand name dedicated Macro lens of 90-105mm focal length**
 - Check f-stop specifications, nothing less than f22
- **Pentax lenses of almost ALL generations fit and work on Pentax DSLR bodies… and they are usually VERY affordable!**

Wanna go “all-in”?!?

Hasselblad H40D-200MS – 50MP raw to 200MP w/6 shot sequential combination

$36,000 BODY ONLY Lenses $5K to $10K EACH!

SAMPLE PHOTOS

Normal healthy eye wearing soft contact lens 1:1.5
Anterior Segment Ocular Photography

Normal healthy eye wearing contact lens 1:1

Corneal FB before removal

Cornea after FB removal

FB on 28 gauge insulin needle

FB on Q-tip

Cornea after FB removal & Algar brush

Cled T. Click, O.D.
Anterior Segment Ocular Photography

Nasal pterygium

Conjunctival Neovascular Cyst

Subconjunctival hemorrhage & irregular pupil
Anterior Segment Ocular Photography

Viral conjunctivitis “pink eye”

Double corneal graft w/neovascularization

Protein deposits on contact lens

Protein deposits on contact lens

Corneal haze/scarring after Herpes Simplex

Hair growing out of facial neoplasm near eye
Anterior Segment Ocular Photography

- Dermoid cyst w/ hair growing out of it
- Dermoid cyst after hair removed
- Blepharochalasis / Dermatochalasis
- Stye/hordeolum
- Stye/hordeolum & peripheral iridotomy
- Ptosis & Facial Telangiectasia (tel-an-jeck-tasia)
Anterior Segment Ocular Photography

Heterochromia

Nuclear sclerotic cataract through slit lamp

Iris coloboma – inverse keyhole

Ciliary Ruff (aka ectropion of Uvea)

DINE Pentax Optio V10 Intra-Oral Dental Camera

SAMPLE PHOTOS

www.dinecorp.com
Anterior Segment Ocular Photography

Anterior Photo Challenges

- Ocular photography is NOT too difficult.
- Ocular photography IS profitable.
- Anterior Segment Photography is medically reimbursable.
- Enhances YOUR practice and improves patient education.

Anterior Photo Challenges

- It is NOT hard to learn to utilize the technology
- OD’s frequently have a hard time billing what they and technology are worth
- Learn to “order tests” vs “selling tests”
Anterior Segment Ocular Photography

PRACTICE BENEFITS

• Better documentation
 – Which is better, your hand drawn picture or a detailed, well lighted, in-focus photo?
• Great Patient Education tool.
• Great telemedicine via Encrypted PDF files or surface mail with MD's.
 – Comanagement & Referrals
• Ties patient to YOUR practice.

Let’s Talk $$$ - Reimbursement

• CPT 92285 – Medicare TX - $44.44
• 1 per day x 240 days = $10,666
• 3 per day x 240 days = $31,998
• 5 per day x 240 days = $53,330
• Takes 1 minute to take photos
• Takes 4 minutes to process/print interpretation and report.
• Can be delegated to staff!

Possibilities?

Dreams CAN come True!

Questions?

• Cled T. Click, O.D.
• Email: Cledc@yahoo.com
• Mobile: 806-678-4261

Cled T. Click, O.D.